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ABSTRACT

This report shows systematic techniques for hmn4ling or 4packagin/'

of n-tuples of n-tuples of position, velocityi and acceleration vectors.

Uarge system of ve&tors cast into a -vector representations 10.6, in

a natural vay- to matrix RiecatirMtiaons.
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The scalar iccati Equation a given by Ine. (ReferenCe 1) is

. + ay 2 + by + c 0 (i-i)

where y is a selar-valued variable of the ecaler &rVmnt (variable)

time, a, b, and c are constants or time varying coefficients.

The matrix Riccati Equation as given by Levine (Bleference 2) is

+ B].Y + B + Y'AY +C-(O] ([-2)

where Y (t) is a matrix-valued function of a scalar aaemnt (single variable

tiie) and A, B.j, Ba and C are constant or time-varying coefficient-matrices.

Kalman, Bellman, Pontrjagin and other researchers vorking in the area

of mathematical programming and optimization frequently refer to the matrix

Riccati Equation. The determination of an optimal eontrol in feedback eontrol

theory or of an optimal filter in estimation and prediction theory invokes

a consideration of the Riccati Equation.

This report shovs how numerously one can obtain matrix Riccati relations

in vector dynamics. A geometrical insight into the relations described by the

matrices is presented.



Section I. Some Aspects of COneralised Dynamical Orstaw

This section considers system of vetrs avd their first and second

derivatives. Bepresentations of the vectors independent of their coordinates

in bases are presented parallel: to matrioes cf their coord4Jteb relative to

movirg bases. Natries of invariant inner-products of velocity vectore

representing a matrix of scalars of thernotion of a system of vectors,

motivates the notion of pneralized energies. , A scs r invariant of the

system in generated as the trace of the matrix and has Its analog in total

system energy.

MaDy other classical mechanics notions are presented in a unifying

systematic manner based on fundamentals of mathematical transformation theory.

Oonsider a vector x in real n-space vith coordinates in a fixed basis

<7and in two other arbitrary bases < and <z", that I.

The coordinates of the.Y basis in the f space is

<Y- -<1 if (2)

and smiliarlty

<z -<F zf (3)

The system of 2n + 1 vectors

<-s - .,<Ys ) -(X, RI Y2.- 73.- i , is1) (4)

in n-space with no constraints represents n(2n + 1) independent coordinates

that is 2n2 + n scalars (field elements) specify the configuration of the

seven vectors. Each second-derivative vector (e.g. x in n-space requires

2 n integrators (with their initial conditions) to obtain the vector.
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Hence the dynamical propagation of the- sytem, of vectors

<e X Yi,~ Z (XP YIL, Ya, Ys, ZI, Za, 73) ()

raqufres 2 x n x 7 a 114 n integrators. In three space one has 142 integrators

in a computer fechanization of the system. The time derivatives of (5) are

with respect to the fixed background basis, that is

< ?- l5 (6)

Using (2) and (3) in (W) one obtains

XI> -X>E (7)

hence for coalete flexibility in mapping between buses, the transformation

matrices T and Z, must be obtained. These transfovmations as well as a

nuber of other relations are obtained as solutions of matrix Riccati type

equations.

Before bogging down in the detailed maze of matrices of coordinates,

let us glimpse at the overall second-derivative picture of the system of

vectors. Note that above we state matrices of coordinates. This handling

of large packages of coordinates (matrices) alleviates the tediousness of

the standard classical treatise of mechanics systems of particles wherein

one deals with a maze of super and subscripts which rapidly swamp the

meening of the physical picture.

A. Matrices of Izivariant Usprsentationa

The relative configuration of the system of vectors my be

described by a matrix of inner-products (independent Of coordinates) by

3



I i c$,<i)UQ.E,

> <7. (8)

or

X*. xY-<x

where geanetrically one has the Oonventioml notion of

r* 111 I~ (10)

i .i = (i., 7i., 73-') (1)

*<Z. Yl;i.l Yiis2 YlZ QYZ*

72 YT<." i n 72-1 (12)

One may nov write (9) as

QQUK

The first derivative cenmic* of the system Is 4see.lbed by

or
4



1

Q88 x ex,2,K (<y, <z) (35)

z1

Note that the time derivative terms of (15) are coordinate free. In

later sections the matrices of coordinates vill enter the picture.

The second derivative dynamics of the system Is described by

0O

i>-<1+2 < a (16)

Clearly one detects the notion of total system Rinetic energy or

rather a matrix of sam of the scalaxs of the motion in the matrix of

inner-products i> " <, that is

> <>.<

The total "energy" is the trace of/(17), that is

e M- ~M trac P~ (18)

or

ilx, + trace V y+tac 'K,,~ .raL i> . ,<,1>.:1

The trace of a matrix is an invariant (independent of bases.)

The analogs of the classical concepts of energy, pover, ete,4or a

system of vectors my also be formulated and handled at the matrix of

vectors level. Lator reports will present thase generalized systems of

vectnrs in generalized coordinates in a Hazmiltonian framevork.
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B. Matrices of Matrices of Coordinates

Consider the matrix of coordinates of the < vectors in theCy

basis, that is by (2) and (3)

< .4z u< Y'z =4C 4T .(20)

The system of vectors < is now

-(_x'<j,< T) (21)

and

>-<7u Ny'x XyT (22)

The matrix of scalars T of (20) may be evaluated as a matrix of inner-

products by projecting the vectors onto the 4ual vectors that in

since by definition of duals or reciprocals

It is shown in later sections that the matrix T satisfies a matrix

Riccati differential equation.

C. The Alias - Alibi Aspect

In algebraic transformation theory one is confronted with the vector

matrix equation

W> aA > (25)

6



which has two interpretations;

(W ~> saadv> ame two di~fferent vectors.

(2) t> and v> are the saw vectors in different coordinate

systems (bases). Clear3y (25) is the same form as (7).

pbgios*points out that the theory of changing bases Is coextensive

with the theory of invertible linear transforMations. He states that an

invertible linear transformation is an autimorphismp whereby an auto-

morphism means an isomorphism of a vector space with itself. Halmos

points out that conversely, every automorphism is an invertible linear

transformation.

The study of the properties of a linear transformation A on a vector

U> and of the structure of the transformation A necessitates that one study

the Offect of A on n-linearly independent vectors U> is U> 2, .- u

For exwqale, in the three space three linearly indepemdenat vectors

u> i in the dormin space under A mp to three vectors in the Rne

space with respect to A as

[V> IW> I w>s ] [A u> 3.p Au>, AU> 3 ] (26)

or

W- A U (27)

Since U are linearly independent their matrix of coordinates U is an

invertible matrix, hence

-1

A W U (28)

*almos, P. 86.
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Clearr., then in the study of the dynamios of the single vctor,

one must study the ftotion of n linearly Iep nt eOtore-

axn~lx. .. Xi (29)

In differential equation theory this is equivalent to obtaining n

linearly Independent solutions.

For example, if the vector I s known to propagate u mr a linear

law A(t) where A Is a

x> - A(t)x> (30)

function of time, one must consider the extended system of (4) as

to obtain the dynamics of in tvo arbitrary sete of waving bases and

C. In other words, one ust asid n-lne ndo ent solution

vectors.

This paper win not go Into the study of the analytical properties

of the system of dynamical vectors of (31).
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Section II. Vector &stem quations of 0tion

This report is limited to fomilation of the equation of iotion for

the system of (I-4) for computer mechmization and to yeild geometrical

insight into the geometrical dynamics.

A. First Derivative Vector Matrix, bolations

The vector i by (Z1) in the two arbitrary wving bases is

and the derivative vith respect to time is

x n - 30>+ <Y <i xt> < (2)

since is a basis, the three velocity vectors may be ex.,ssed

in the <y basis, that is a matrix of scalars exist such that

and similarly for the < vectors

By (1-2)

and
-l

<y -1(6)

hence

<(7)

9



since by (I-6)

hence

By (3) and (9)

-1.
Y = v (y) , (10)

and similarly for the basis < that is

<z -( < z z z. V (Z)()

By (10) and (11)

Y YV(Y) (22)z z V (Z) '(1

The two first order ma.rix differential equations above are special

cases of the Riccati matrix equation shovn in(I-2).

By (1-20)

<z-4C T- y z

hence also

10



Using (9) and. (11) in (15)

<Zy- -<y T V(z) +<y V(yT (16)

or

,; -T V Z)+( (17)

vhich is al1so a matrix Riocati equation as seen byr (1-2).

One may derive (17) directly from the matrix relations of (1)4), that is

-1

and/

Tm d.Y Z z+ z Z 19

now

Y y-1 (20)

hence

-1 -1.
d Y (Y) + Y y [0] (21)
dt

therefore

d(y ) Yx Y (22)

Equation (22) in (19) yields

TiyY YY ~+ y (23)

13



Using the identity
-1

ZZ 1 (24)

(23) becomes

• -1 • -I -1 -"1.

T=-Y Y(Y z) +(Y z)-z z-- (25)

Using (18) in (25)

* -1 • -1.•

T -Y TT + TZ Z (26)

Clearly if Y and Z satisfy

y y v (y) (27)

and

z z V (z) (28)

then (26) may be vritten as

T m V (y) T + T V (z) (29)

which a-ees with (17).

The latter derivation is mechanical manipulation and does not o0Yey

the direct geometrical clarity as does the first derivat1ca leading to (17).

Consider the metric-matrix of the < basis that is

12



The derivative of (30) is

y y <Y(31)

BY (3 )

<Y <iV (y) (32)

and transposing

V (Y)(33)

hence using (32) and (33) in J*31) y;Ields

M, yV (y) My+MyVy 1 ("

which once again is a special case of the Matrix jiccati equation (i-2).

A repetition of the same arguuat for the dynamics of thez

basis yields

14zz V'(z) (35)Mz V(Z

Consider next the matrix of inner-products between the bases

Ky and-z that is

Q - j> -<z7 YyT (36)

The matrix Q specifies the relative orientations of the vectors.

The derivative of (36) is

13



Using (33) and (11) in (37)

Q 1(Vy) i> <; + -Y> < Z- (Z) (38)

and by (36)

I * =,(Y) q + Qv Vz) (39)

B. Second Deriva'Aive Vector-Mstrix Relations

The vector x in the <?. yand the<-& bases by (-)is

<- ucXl> < i YY> - <Z XEZ> (40)

and the velocity vector is

The aer o +vetor (12)

The acceleration vector in

> w~y iO + 24dy <Yx> (3)

0( +

4: li > + z



Section III. Trajectory of a Vector iand one Arbitr@27 T IM Tarrum~ Dals 4

The first case will consider the simple system of fouir ar'bitaryz

vectors with the only condition that the three vectors <"foran a basis,

that is

where

<? - f NJxt> m<Y, A> (1.6)

and

In three space we have a system of four vectors each having three

independent variables or a total of twelve arbitrary coordinates to

specify the geometrical configuration of the-system of vectors.

Clearly, at the velocity level we need twelve integrations and

< 8 <f (t) <-V(4.8)

twelve initial conditions or constants of the motion as shown by (4i8) where

the components of the 3 x 4& matrix are all in the nfiedlVbases <f

In most real-life problems the parameters of the system and the

constants ct the system occur most naturally in moving bases.



Clearly, the second derivative vectors of the system require 24

integrations, that is

8 rx> y~) I <V(I9)

and 24 initdl conditions, the additional tvelve are conditions o1l

initial velocities, since

and

. V(y)

hence

<..< [;(x)> . ;w, (50)

The acceleration vector x in the moving basis< by (i.,) is

.< .> + 2<-y +< 7<'>. ...

By (32)

and

or

<Y .< [ (Y) + ;(Y) ] (5)

16



Using (52) and (53) in (50)

.0 +2 V() ; + [.2(y + (y)]Xy>(55)

also

xu -u<y ay> (56)

vhere < may be considered the driving vector (specific foroe in m eohanics),

hence

)+ 2 V(y)Y + (V + V) XY> -at? (57)

Equation (57) is a second-order matrix differential equati linear in

the vector variable XY> and its derivatives, that is

> +A(t) x> + A1(t) x> ma&> (58)

where in general the vector a> is a non-linear function of x> and

x> , that is

(x>(, >59)

depending on the nature of a> .

It has been observed that we need 24 .integrations for the systems

under consideration. Six integrations are required for (58), however,

the position and the velocity coefficient matrices A, and A nmst be

determined. Observe that one vector I requires six integrators and that

the system of three vectors <y will require 18 more integrations.

17



By equation (54i)

< ~ +<[ay .~ ]w (60)

that is

1, Y2s Y3).@,;,8 (61)

and the three "driving" vectors <-have coordinates in the <Ybasis as

Thus., if the matrix H is knovn the first order non-linear matrix

equation can be mohmnisedp that is

+ V'(Y) * H. (63)

Equation (63) requires nine integratioAs and nine initial conditions.

Eqation (27) PrOvides the COW nine integwtions, tbat s

i - Yv(Y) . (64)

The system of vector and matrix differential equations is

6 integator.
) +2 V(y) "t (6)

9 integrators

i(f) + Y V - [o]

9 integrators

18



If the constraints are imposed on the basis <Y, that they are

orthonormal, that is, that

%~ 07>1<7 W I a [i37 1 (66)

then the symmetric matrix contains six independent conditions to be

satisfied. These conditions are

ni ,, (67)

which is three conditions, and

j .7 -0 ± (68)

since

Yi'Yj YJ'Yi (69)

the six off-diagonal conditions are redundant because of symmetry. that

is only three independent conditions.

From the above discussion, it is clear that the three vectors <Y

with the constraint (66) are completely specified by three independent

coordinates instead of nine, that is the nine elements of the matrix Y

are functions of only three variables q>, hence

It is well known that when K? is also ap 0.1 basis, or

(71)

Y'-f>(72)

19



hence

i> -<Y- Y/ Uf Y(73)

BY (66) and (71)

I mY'Y (7i1 )

hence

Y -1

and Y is sa.d to be an orthogonal matrix.

The theory of Ruler angles and relations to O.N basso is vell known, that is

< ~~N W< Xj.. 0a.)x) K(4.

vhere $j are Ruler angles and N, Kj, 3k are rotati o mtrices.

It vili nov be shown that the matrix V (y) of (51) is skew-symostric.

Oonsider

and differentiating

Y>. <Y + ->.< <- o

hence

"~ < - -y€
Y(75)

20



Transposing (51)

Y> mV'(y) ;>(76)

projecting (76) ont' Y, that is

<y k vyj (77)

and projecting (51) onto - ;ha. r

using (77) and (78) in (75)

v "(y) - - v(Y)

or

V(y) . I- v(y) (79)

hence the matrix V is skew-uyuetric. Define its elemnts as

v - o (80)

The relationship to Baer angles is given in referencet, 4)
The matrix equation (63) becomes

o 3 64 +w * 81)

-&bg 0 Id1  + ww il+ws)Wf

(a-1  0 W3wat+ WS

W~'ft



Equating the indicated elements of EAlation (81)

a+ bb g ha.%

g + wa w. -he]

Equation (82) may be put into matrix form as

0 S0 wi h23\

+ wo 0 0 W2 = (83)

) (111WWI/

The above non-linear tranfo 'ton matrix is singular (non-invertible)

and is not unique, for example

WS 2 0 0 W2 W

=,5 - o W (84)

W20 W, 0 3wb(wz

Observe that the transformation matrix of Equation (83) is a function

of w1 and w, whereas the matrix of (8 4) is a function of 44 and W2.

3f we make (83) lok like a vector in the < space

22



then the vector components are

h3 l.i3 S

h12 0 71 *'2

and

Clearly (63) requires only three integrations rather than nine as before.

Hence the system (65) reduces to 18 integrators. Hemver, these are not

linearly independent differential equations as is kngwn, only twelve are

linearly independent. Let us find the redundant ones.

Consider Equation (64), that in

V (w>) m-1i

Equating the three unique elements of V in (e5) to the right hand

matrix product yields

1.a (.1 ;> 3



The relations (85) are well known to imply

where T (>) is invertible so long as the second angle is no.t 90°, that is

#> -f 1 W> . (86)

One can now use three integrations to obtain and then generate

the trigonometric relations of the matrix Y since

Y mY

The constrained system now has tvelve integrations

7+ 2 V(W>) y> (W + V ) X > ma>

The above system of equations looks like the standard six degree of

freedom rigid-body dynamics. Clearly twelye integrations are required.

The transfer-matrix flow diagram of the system (87) Is shown in

Figure (1).
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Section IV The T'ajectOT7 of a Vctorl sa t ArbitIM Time-Varying

Bases (yand< I N2 intomrtions).

In aerospace vehicle math-odelling one must consider many time

ve.rying bases. This section considers the system of vectors

and the relations

<7jf (2)

where

or by

<z -< f ZT< (5)

By Analogy with (II-60)

<z < [,Va() + V(s)] .cZ i ,(,) (6)

26



The system equations are by (11-65) (11-17) and 5

Y+ 2 V(y) ir> + (Y) + (Y)]jx> - ay>

6 integrators

V(y) + v2 (y) - 1(y)

9 integrators

v(Z) + VO(z) - (Z)

9 integrators

+ V(y) T - v(z) (01 (7)

9 integrators

-*T V(y)

9 integrators

Algebraic Relations

and

xx > .T;r>

The above system requres 4.2 Integrations plus the Indicated algsebraic

manipulatlons. The system is not umiquei that In one omld. obtain m other

math Aodels of the same dynouLoal systft. Jbr exal4e, oo054"w

27



and

and

by Wi-3) and Mi-60

or

T +2 V(y) ;+[ (y) + 2 V(y)]T H(Z) 0 8

Banco the system is defined by

0 >) 2 (y ) ;Y + 1(7+)Y"

9 Intesato=~

T(y) + 2V(y) T+[+ 1(y)];T -[101 9

Y-Y V(y)

Mume the twomoing basesa <Y a <x "Vs .0,a x Wsiz besw *,v

the transformtIou ustrixT in a funntiou of o.31 these pM'mser. - Um31

the Euler angles orienting the two bases then one redwes the system (9)

to a system of 9 degrees of freedla or 18 integrations. rm details of

28



the derivation are not p1esented in this paper. The classical approach

to this case introduces such "poor" notions as "pseudo vector" or axial

vectors and relations like

vhere the "axial" angular velocity vectors and i are "inertial angular

velocities" and y is the relative angular velodity vector.
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